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Abstract:

The purpose of this paper is to obtain different sets of non-zero distinct integral solutions of
ternary non-homogeneous cubic Diophantine equation Xx*>+by*=(m’+bn?*)z’. A few
properties of interest are presented.
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Notations:

T, -Triangular number of rank n
HP, -Heptagonal number of rank n
O, -Octagonal number of rank n
D, -Decagonal number of rank n

DD, -Dodecagonal number of rank n
Th, -Tetrahedral number of rank n

PP, -Pentagonal Pyramidal number of rank n

Introduction:

The theory of Diophantine equations offers a rich variety of fascinating problems. In
particular, cubic diophantine equations, homogeneous and non-homogeneous have aroused the
interest of numerous mathematicians since antiquity [1-4]. In this context, one may refer [5-25]
for various problems on the cubic diophantine equations with three variables, where, in each of
the problems, different sets of non-zero integer solutions are obtained. However, often we come
across homogeneous and non-homogeneous cubic equations and as such one may require its

integral solution in its most general form. It is towards this end, this paper concerns with the
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problem of determining a general form of non-trivial integral solutions of the non-homogeneous

cubic equation with three unknowns given by  x* +by* = (m? +bn?®) z°.

Method of Analysis :
The non-homogeneous ternary cubic diophantine equation
under consideration is
x? +by? = (m? +bn?)z3 (1)

where b= 0 and m,n are arbitrary integers not equal to zero simultaneously.

Taking
z=p*+bqg?,p,q=0 )
in (1), it is written as
(x +ivby)(x —ivby) = (m +ivbn)(m —i~/bn)(p +ig+/b)*(p —igvb)° (3)
Assume
x+ivby = (m +ivbn)(p +ivba)® (4)

Since complex conjugates occur in pairs, we have

x —ivby = (m—ivbn)(p —ivbq)® (5)
From (4) and (5), the values of x and y are obtained as

x=m(p®-30opq*) —bn(3p*q -bg®) (6)

y =m(3p*q-bg*)+n(p° -3bpg?*) (7

Thus, equations (2), (6) and (7) represent the integral solutions of (1).
To obtain various characterizations of solutions of (1), we have to

consider it when the parameters m,n and b take particular values.
For illustration, the choice

m=1 n=0, b=-1 (8)
in (1) leads to the diophantine equation

x?-y? =273 ©)

We present various patterns of solutions of (9) below:
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Substituting (8) in (2), (6) and (7), the values of x,y and z satisfying (9) are obtained as

X =p(p* +39°%)
y=0a(3p*+q°)
7 — pz _qz

A few interesting properties observed from the above solutions are given below:

1)

2)

3)

4)

5)
6)

f)

9)
h)

Each of the expressions x+vy , 4(x—az)(y+bz), 4(x+3az)(y—3bz) isa

Cubical integer.
If the parameters (p,q) are taken as the squares of legs of a Pythagorean

triangle the sum x + y is a sextic integer.
Taking the parameter p to represent square of the hypotenuse and q to
denote the square of a leg of a Pythagorean triangle, the difference x—y
IS a sextic integer.
The triplet (4pgz, 8p°q?, qx+ py) forms a Pythagorean triplet
py —OX =2pqz
Introducing the notations x(p,q),y(p,q) and z(p,q) for the solutions
X,y and z respectively, the following relations are noticed.
3[Xx(L1+2q) —2x(1,1+0q)+4x(L q)] is a Nasty number.
x(L,q)+3z(Lg)=4
22(p+2q,q)—4z(p+0,0)+2z(p,q) =x(1,9)—z(1,q)
z2(p+29,9)-2z(p+q,q)+2(p,q) = x(1,q) +z(1,q) -2
z(p.a)z(p+9, p—a) = 2(2pa)z(p.q) = 2(py(p.,q) —ax(p,q))

64x%(p,) =[y(p.) +2(p.][y(p.) + 2(p, ) +12]°

2(p+9,9)—z(p-9,0)=4pq=z(p+0, p—0)
If p,g(p>q) are taken as the generators of a Pythagorean triangle, then

2(p+9,9)+2(p-a,9)—z(p,q) = p?+q? represents the hypotenuse of the

Pythagorean triangle.
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Pattern 11

Introduction of the transformations

x=my,z:(m2—1)a2’m>1,a¢0 (10)
in (9), simplifies it to
y=(m? -3 (11)
and thus x =m(m? —1)a* (12)

The values of x,y and z presented in (10), (11) and (12) represent the solutions of (9).

Properties
1) X =60°Th,, ,,
Xz
2) 7 = 6Thm
3) The value of x may be considered to represent cubic multiple of the area
of the Pythagorean triangle (2m,m? —1,m? +1).
. 2 mxy .
4) Each of the expressions ———, —~ s a perfect square.
X“—z° z
Coxy? oxy ..
5) Each of the expressions —-, —- is an integer.
z° 2
2 2
6) m >;y is a cubic integer.
z
7) X+my—-2maz =0
8) X +m3y® —8m3a®z® + 6xyzm?a =0
9) The triplet (x, maz, my) forms an Arithmetic Progression.
10)  a(mx-y) =22
11)  mPa®x® -a’y? —z°% =3ma’xyz?
Pattern 111

Assume the values of x and y to be

X = 23(1—2 V3a—1 +V
(13)
y — 23&—2 V30c71 -V
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where a,v are non-zero constants.
From (9), we get
z=(2v)”
Thus (13) and (14) represent the solutions of (9).

Properties

(14)

1)  The triplet (y, 22“Yv?*?z, x) forms an Arithmetic Progression with

common difference v

2) Each of the expressions 2(x*—xy)—z3%z°—2(xy—y?) is a perfect

square.

3) Each of the expressions 12(x* —xy) —6z°, 6z° +12(y? — xy) represents

Nasty Number.

3a-1

4) X+y+z=(X-Y)

5) z=(x-y)*

+(xX=y)*

Pattern IV

Write (9) as
X—-y=1
X+y=2°

Solving (15) and (16), we have

For x,y to be integers, z should be odd.

Thus taking z=2k -1, (k #1), the values of x and y are obtained as

x = 4k® —6k?® + 3k
y = 4k® —6k? +3k -1
The above values of x,y and z represent the solutions of (9).

Properties

1) The solutions are primitive.
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(15)
(16)
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2) 2X—2-1=6Thy 4
3) 2x+12% —1=2PP,, ,
4) X —18Th, —12T, is a cubic number
5) 6HP, —18T,_; — x = 0(mod5k)
6) 6HP, —18T, ;, — y = 0(mod5k +1)
7) X—8PR, +6T,_, =0(mod7)
8) y—8PB, +6T,_; =—-1(mod?7)
9) x=k(Dy)-6T,
10)  y-k(D,)+1=0(mod6)
11)  8PB —2T,_; —O, —x is a Nasty number.
12) X+ 2T, + DD, =0(mod 4)
13)  2(x+2T, + DD, ) is a cubical integer.

14)  6k(x+2T, + DD,) is a Nasty number.

Conclusion:

In this paper, we have made an attempt to find non-zero distinct integer solutions

to the non-homogeneous cubic equation with three unknowns given by
x> +by’* =(m*+bn®)z°. To conclude, one may search for other choices of

general form of integer solutions to the cubic equation with three unknowns in

title.
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